

Las instalaciones de biomasa en los edificios municipales: claves para su correcto funcionamiento y ejecución

Antonio Jesús Pérez. Director Técnico BIOLIZA, Recursos Estratégicos de Biomasa, S.L.

Cluster de la construcción sostenible. Padul (Granada) 24 y 26 de noviembre, 1 y 3 de diciembre de 2015

Módulos

- El mercado de la biomasa. Situación actual
- Equipos para la climatización con biomasa: aspectos técnicos
- Instalaciones de biomasa en edificios. Aspectos económicos
- 4. Casos prácticos

Índice

- Ejercicios.
- 1. Vivienda Unifamiliar.
- 2. Residencia de mayores.
- 3. Cálculo reducción emisiones CO_{2.}
- 4. Matadero municipal.
- □ 5. Proyectos CLIMA.

Para comenzar...(i)

- El kilovatio hora (kWh), es una unidad de energía. Equivale a la energía desarrollada por una potencia de un kilovatio (kW) durante una hora.
 - 1 kWh → 860 kcal
 - 1 kWh → 3,6 MJ
 - 1 kWh → 3.600 kJ
 - 1 MJ → 0,28 kWh
 - 1 MJ → 239 kcal
 - 1 kcal → 0,00116 kWh
 - 1 kcal → 0,00418 MJ
 - 1 th → 1.000 kcal / 1,16 kWh / 4,18 MJ

Para comenzar...(ii)

- EJERCICIO "CÁLCULO DE DENSIDAD ENERGÉTICA"
- Calcule la densidad energética almacenada de una biomasa cuyo PCI es de 3.500 kcal/kg seco y tiene una densidad de 125 kg/m³ con una humedad 27%.
- ☐ ¿ Y si la humedad fuese del 10 %?
- ☐ ¿Cabe la misma cantidad de biomasa por m³? ¿Y de energía?

Para comenzar...(iii)

- EJERCICIO "CÁLCULO DE DENSIDAD ENERGÉTICA"
- Cálculo de la densidad en estado seco.
 - 125 kg/m³ * (100% 27%) = 91,25 kg/m³ en estado seco.
- Densidad energética.
 - 91,25 kg/m3 estado seco * 3500 kcal/kg seco = 319.375 kcal/ m3
 - 371,4 kWh/m3
- Cálculo de la densidad en estado seco.
 - 125 kg/m³ * (100% 10%) = 112,5 kg/m³ en estado seco.
- Densidad energética.
 - 112,5 kg/m3 estado seco * 3500 kcal/kg seco = 393.750 kcal/ m3
 - 457,8 kWh/m3

Para comenzar...(iv)

- ☐ EJERCICIO "CÁLCULO DEL CONSUMO DE BIOMASA"
- Calcule el consumo de biomasa (poder calorífico 2.340 kcal/kg, humedad 22%), de una instalación con un 79% de rendimiento y una potencia de 100 kW (1 kW = 860 kcal/h)
- Cuánto consumiría la instalación con un η=90%?
- ☐ ¿ Y si la humedad fuese del 8 %?

Para comenzar...(v)

- □ EJERCICIO "CÁLCULO DEL CONSUMO DE BIOMASA"
- Cálculo de las necesidades energéticas.
 - 100 kW/0,79 = 126,58 kW
 - 126,58 kW x 860 kcal/h = 108.860,76 kcal/h
- Consumo de biomasa
 - 108.860,76 kcal/h / 2340 kcal/kg = 46,52 kg/h
- Cálculo de las necesidades energéticas.
 - 100 kW/0,90 = 111,11 kW
 - 111,11 kW x 860 kcal/h = 95.554,60 kcal/h
- Consumo de biomasa
 - 95.554,60 kcal/h / 2340 kcal/kg = 40,84 kg/h

Para comenzar...(vi)

□ EJERCICIO "CÁLCULO DEL CONSUMO DE BIOMASA"

- □ Estimación del P.C.I al 8% de humedad.
 - 1 kg * (100% 22%) = 0,780 kg en estado seco. → 2.340 kcal/kg
 - 1 kg * (100% 8%) = 0,920 kg en estado seco. → ? Kcal/kg
- Poder Calorífico Inferior.
 - (0,920 kg / 0780 kg) * 2.340 kcal/kg = 2.760 kcal/ kg
- Cálculo de las necesidades energéticas.
 - 100 kW/0,90 = 111,11 kW
 - 111,11 kW x 860 kcal/h = 95.554,60 kcal/h
- Consumo de biomasa
 - 95.554,60 kcal/h / 2760 kcal/kg = 34,62 kg/h

Para comenzar...(vii)

- EJERCICIO "CÁLCULO DEL CONSUMO DE BIOMASA"
- □ El coste de la caldera de 100 kW con un η=79% cuesta 15.000 € y la que posee un η=90 cuesta 17.500 €. El coste de la biomasa al 22% de humedad a pie de instalación es de 65 €/t y al 8% de humedad 80 €/t.
- □ El régimen histórico de funcionamiento de esta instalación es de 660 horas anuales.
- ¿Qué opción elegiría en su instalación?

Para comenzar...(viii)

□ EJERCICIO "CÁLCULO DEL CONSUMO DE BIOMASA"

- $\eta = 79 \% \text{ y h} = 22 \%$
 - 46,52 kg/h * 660 h/año * 0,065 €/kg = 1.995,71 €/año
- \square $\eta = 90 \% \text{ y h} = 22 \%$
 - 40,84 kg/h * 660 h/año * 0,065 €/kg = 1.752,04 €/año
- \Box $\eta = 90 \% \text{ y h} = 8 \%$
 - 34,62 kg/h * 660 h/año * 0,080 €/kg = 1.827,94 €/año
- Amortización.
 - η = 79 % y h= 22 % → 1.995,71 €/año / 2.500 € = 0,80 años
 - η = 90 % y h= 22 % → 1.752,04 €/año / 2.500 € = 0,70 años
 - η = 90 % y h= 8 % → 1.827,94 €/año / 2.500 € = 0,73 años

Caso 1. Vivienda unifamiliar (i)

- Dados los siguientes datos correspondientes a una caldera de biomasa para usos finales térmicos correspondiente a una vivienda unifamiliar, se pide:
 - Calcular la energía útil demandada por la vivienda en kWh/año.
 - La energía necesaria aportada por el combustible.
 - El consumo anual y diario de combustible.
 - Calcular la energía del combustible y el consumo anual si se utilizara gasóleo de calefacción en lugar de biomasa (PCI gasóleo C = 9,643 kWh/kg)
 - Si el coste de la biomasa fuese de 0,048 €/kg y el del gasóleo 0,6 €/kg, ¿cuánto se ahorraría con el sistema de biomasa?

Caso 1. Vivienda unifamiliar (ii)

- Datos.
 - Potencia útil de la caldera: 20 kW
 - Rendimiento: 90%
 - PCI biomasa: 4.003 kcal/kg
 - Días de funcionamiento anuales: 150
 - Horas diarias de funcionamiento: 8

Caso 1. Vivienda unifamiliar (iii)

- ☐ RESOLUCIÓN.
 - Horas anuales de funcionamiento = 150 días x 8 h/día = 1.200 h.
 - PCI biomasa: 4.003 kcal/kg / 860 kcal/kWh = 4,65 kWh /kg
- Energía útil demandada por la vivienda
 - \blacksquare E = P * t.
 - E = 20 kW * 1.200 h/año = 24.000 kWh/año
- La energía necesaria aportada por el combustible.
 - $C = D/\eta$
 - C = 24.000 kWh /año / 0,90 = 26.667 kWh/año

Caso 1. Vivienda unifamiliar (iv)

- RESOLUCIÓN.
- Consumo anual y diario de combustible.
 - 26.667 kWh/año / 4,65 kWh/kg = 5.734,84 kg/año.
 - 5.734,84 kg/año / 150 días/año = 38,23 kg /día
- Calcular la energía del combustible y el consumo anual si se utilizara gasóleo de calefacción en lugar de biomasa (PCI gasóleo C = 9,643 kWh/kg)
 - 26.667 kWh/año / 9,643 kWh/kg = 2.765,43 kg/año.
 - 1 litro = 0,832 kg
 - 2.765,43 kg / 0,832 kg/litro = 3.323 litros/año

Caso 1. Vivienda unifamiliar (v)

- RESOLUCIÓN.
- Si el coste de la biomasa fuese de 0,048 €/kg y el del gasóleo 0,6 €/kg, ¿cuánto se ahorraría con el sistema de biomasa?
 - 5.734,84 kg/año * 0,048 €/kg = 275,27 € /año.
 - Coste del gasóleo C.
 - 0,6 €/kg * 832 kg/m³ * 1 m³ / 1.000 litros = 0,50 €/litro
 - 3.323 litros /año * 0,50 €/litro = 1.661,50 €/año
 - Ahorro.
 - 1.661, 50 €/año 275,27 €/año = 1.386,23 €/año

Caso 2. Residencia de mayores (i)

- □ Dado el gran coste energético que supone la alimentación de un sistema térmico para calefacción y ACS en una residencia de mayores, el Gerente se plantea la posibilidad de realizar un cambio de energía primaria fósil (gasóleo) por energías renovables (biomasa para uso final térmico).
- □ Realizado el estudio de cargas térmicas del edificio, se obtiene una demanda de 212,4 kW.
- En cuanto al <u>almacenamiento</u>, la biomasa se acopiará en un habitáculo contiguo a la actual sala de calderas cuyo volumen útil es de 25,24 m³.
- ☐ El rendimiento del sistema de generación térmica es del 92%.
- □ En la temporada estacional de más demanda, el sistema térmico de biomasa funcionará 12 horas al día.

Caso 2. Residencia de mayores (ii)

En base a la información anterior, se pide realizar el cálculo de lo siguiente:

- □ Consumo energético del sistema de biomasa.
- Energía diaria demandada por el sistema de biomasa a pleno funcionamiento.
- Consumo de biomasa diario.
- □ Volumen diario de biomasa consumida.
- □ Si la empresa proveedora de la biomasa tarda 15 días en suministrar la materia prima desde que se efectúa el pedido. ¿Cada cuánto tiempo debe realizarse?

Datos de la biomasa:

P.C.I = 5 kWh/kg

Densidad = 675 kg/m^3

Caso 2. Residencia de mayores (iii)

Consumo energético del sistema de biomasa.

$$C = D/\eta$$

$$\eta = 0.92$$

$$C = 230,9 \text{ kW}$$

□ Energía diaria demandada por el sistema de biomasa a pleno funcionamiento.

$$Ec = Pc*t$$

Consumo de biomasa diario.

$$Bc = Ec/PCI$$

$$Bc = 555 \text{ kg/día}$$

Caso 2. Residencia de mayores (iv)

□ Volumen diario de biomasa consumida.

$$VB = Bc/d$$

Bc= 555 kg/día
d= 675 kg/m³
$$VB = 0.82 \text{ m}^3/\text{día}$$

□ Si la empresa proveedora de la biomasa tarda 15 días en suministrar la materia prima desde que se efectúa el pedido. ¿Cada cuánto tiempo debe realizarse?

Autonomía del silo

A = Vu/VB

$$A = 30 días$$

Habría que realizar el pedido a los 14 días del suministro como máximo.

20

Diputación de Granada

Volviendo al caso anterior de la residencia:

Teniendo en cuenta la potencia instalada en esta residencia de ancianos (212,4 kW) y que el régimen medio de funcionamiento anual es de 960 horas.

Calcule las Toneladas de CO₂ evitadas en la sustitución de gasóleo por biomasa a lo largo de los 20 años de vida útil de la instalación.

Diputación de Granada

Factores de emisiones de CO2			
		Valores Propuestos	
	Fuente	kg CO2 /kWh E. final	
Electricidad convencional Nacional	(*)	0,399	
Electricidad Nacional de origen 100% renovable	(**)	0	
Electricidad Nacional de origen 100% no renovable	(**)	0,521	
Electricidad convencional peninsular	(**)	0,372	
Electricidad convencional Extra peninsular	(**)	0,867	
Electricidad convencional Baleares	(**)	0,960	
Electricidad convencional Canarias	(**)	0,811	
Electricidad convencional Ceuta y Melilla	(**)	0,732	
Gasóleo calefacción	(***)	0,311	
GLP	(***)	0,254	
Gas natural	(***)	0,252	
Carbón	(***)	0,472	
Biomasa	(***)	0,018	
Biomasa densificada (pelets)	(***)	0,018	

BALANCE DE EMISIONES

Tabla 24: Balance de emisiones de la instalación.

COMBUSTIBLE	ENERGÍA ANUAL (kWh E. final)	Kg CO₂ eq/ kWh E. final	Kg CO₂ /año	Tn CO₂ Vida útil instalación.
Gasóleo para calefacción.	203.904,00	0,311	63.414,1	1.268,3
Gas natural.	203.904,00	0,252	51.383,8	1.027,7
Biomasa densificada (pelets).	203.904,00	0,018	3.670,3	73,4
Biomasa.	203.904,00	0,018	3.670,3	73,4

Fuente: Elaboración propia.

Teniendo en cuenta la potencia instalada en esta residencia de ancianos (212,4 kW) y que el régimen medio de funcionamiento anual es de 960 horas.

Diputación

de Granada

Calcule las Toneladas de CO₂ evitadas en la sustitución de gasóleo por biomasa a lo largo de los 20 años de vida útil de la instalación.

AHORRO DE LA NUEVA INSTALACIÓN RESPECTO A LA ACTUAL

Tabla 25: Balance de emisiones de la instalación.

AHORRO EN LA SUSTITUCIÓN DE GASÓLEO (Tn CO₂)			
Biomasa densificada.	1.194,9		
Biomasa.	1.194,9		
Gas natural.	240,6		

Fuente: Elaboración propia.

Caso 4. Matadero municipal (i)

- El Ayuntamiento del municipio X gestiona la industria cárnica de sacrificio municipal, que abastece a la mayoría de los comercios locales, detectando el departamento financiero una subida paulatina en la facturación del servicio de suministro de gas natural que se utiliza como combustible para el sistema de generación térmico mediante calderas de vapor necesarias para el proceso de escaldado, esterilización, agua caliente sanitaria y calefacción de la zona de oficinas.
- □ En la actualidad, esta industria tiene como equipo generador de energía térmica dos calderas de vapor alimentadas mediante gas natural, con una capacidad de producción de 3.000 kg/h en continuo a 8 kg/cm² de presión.
- Una de las calderas está frecuentemente parada, y la caldera que generalmente está funcionando, sólo se pone al 100% de su capacidad en la puesta en marcha, posteriormente suele mantenerse a un 40% de su régimen total.

Caso 4. Matadero municipal (ii)

- □ El Ayuntamiento se plantea optimizar y modernizar la instalación para obtener un ahorro económico y adaptar la industria a las políticas nacionales de reducción de emisiones de CO₂ y a la nueva Directiva Europea 2012/27 UE por la que se fomenta el ahorro y la eficiencia energética, usando energías renovables en las instalaciones de calefacción y de agua caliente sanitaria con el fin de potenciar la sostenibilidad y la calidad ambiental.
- Como componente del departamento técnico municipal, le encargan que estudie la viabilidad para acometer el proyecto de sustitución del sistema de generación térmica mediante gas natural por biomasa.

Caso 4. Matadero municipal (iii)

- ¿Cómo acometería el inicio del estudio?
- □ ¿Qué cambios plantearía?
- ¿Qué tipo de biomasa utilizaría?
- Una vez analizada la demanda térmica real de la industria, ¿Cuánta biomasa se necesitaría?
- ¿Cuáles serían los costes anuales de la biomasa?
- Qué tipo de tecnología de combustión instalaría?
- ¿Qué volumen de almacenamiento se necesita en función de una autonomía fijada?
- Qué tipo de silo utilizaría para almacenar la biomasa?
- Dada una inversión, ¿Sería viable técnicamente acometer el proyecto?
- ¿Es rentable económicamente el proyecto?

Caso 4. Matadero municipal (iv)

- □ ¿Cómo acometería el inicio del estudio?
 - Proceso escaldado y esterilización.
 - Necesidades de vapor y presión.
 - ACS.
- Volumen necesario y T^a
- Calefacción.
 - Datos instalación.
 - Habitáculos.
 - Tipo y cantidad de circuitos.
 - Análisis arquitectónico y de aislamiento.
 - Régimen de funcionamiento (h).
 - CARGAS TÉRMICAS.

Caso 4. Matadero municipal (v)

- ¿Cómo acometería el inicio del estudio?
- □ ¿Qué cambios plantearía?
- ☐ ¿Qué tipo de biomasa utilizaría?
- Una vez analizada la demanda térmica real de la industria, ¿Cuánta biomasa se necesitaría?
- ☐ ¿Cuáles serían los costes anuales de la biomasa?
- Qué tipo de tecnología de combustión instalaría?
- ¿Qué volumen de almacenamiento se necesita en función de una autonomía fijada?
- ¿Qué tipo de silo utilizaría para almacenar la biomasa?
- Dada una inversión, ¿Sería viable técnicamente acometer el proyecto?
- ¿Es rentable económicamente el proyecto?

Caso 4. Matadero municipal (vi)

- □ ¿Qué cambios plantearía?
 - Analizar la instalación actual.
 - Régimen de funcionamiento.
 - Cuánto tiempo funciona.
 - Picos de potencia y producción según la demanda.
 - Una de las calderas está frecuentemente parada, y la caldera que generalmente está funcionando, sólo se pone al 100% de su capacidad en la puesta en marcha, posteriormente suele mantenerse a un 40% de su régimen total.

Sólo una caldera, ya que las calderas de biomasa mantienen una buena inercia térmica y no son necesarios picos de potencia para el arranque. (acumuladores)

Caso 4. Matadero municipal (vii)

- ¿Cómo acometería el inicio del estudio?
 ¿Qué cambios plantearía?
 ¿Qué tipo de biomasa utilizaría?
- Una vez analizada la demanda térmica real de la industria, ¿Cuánta biomasa se necesitaría?
- ¿Cuáles serían los costes anuales de la biomasa?
- Qué tipo de tecnología de combustión instalaría?
- ¿Qué volumen de almacenamiento se necesita en función de una autonomía fijada?
- Qué tipo de silo utilizaría para almacenar la biomasa?
- Dada una inversión, ¿Sería viable técnicamente acometer el proyecto?
- ¿Es rentable económicamente el proyecto?

Caso 4. Matadero municipal (viii)

- ☐ ¿Qué tipo de biomasa utilizaría?
 - Tipología del biocombustible en función de los recursos locales y más cercanos.
 - Precio del biocombustible en función de la energía que puede aportar, de su volumen etc.
 - Disponibilidad y continuidad de suministro.
 - Caracterización físico química de la biomasa, contemplando parámetros como el poder calorífico, humedad, contenido en cenizas, densidad aparente y real etc.

Caso 4. Matadero municipal (ix)

- ☐ ¿Qué tipo de biomasa utilizaría?
 - Pellets.
 - Astillas de madera.
 - Hueso de aceituna.

Caso 4. Matadero municipal (x)

- ☐ ¿Qué tipo de biomasa utilizaría?
 - Astillas de madera.

Tabla 1: Clasificación astillas de madera según ÖNORM M 7133.

Clase	de	Rangos permitidos de granulometría (Tamizado)			Valores permitidos	extremos	
astilla		máx. 20%	60-100%	<u>máx</u> . 20%	Máx. 4%	Sección máxima	Longitud
G30		>16 mm	16-2,8 mm	2,8-1 mm	<1 mm	3 cm ²	8,5 cm
G50		>31,5 mm	31,5-5,6 mm	5,6-1 mm	<1 mm	5 cm ²	12 cm
G100		>63 mm	63-11,2 mm	11,2-1mm	<1 mm	10 cm ²	25 cm

Fuente: Clasificación ÖNORM M 7133 Astillas de madera para la producción energética.

Caso 4. Matadero municipal (xi)

- ☐ ¿Qué tipo de biomasa utilizaría?
 - Pellet.

Tabla 2: Características principales de los pélets de madera.

	Pélets de baja calidad	<u>Pélets</u> estándar	Pélets de alta calidad
P.C.I (Kcal/kg)	>3.000	>4.000	>4.300
P.C.I (kJ/kg)	>12.500	>16.700	>18.000
Humedad b.h (% en masa)	<12	<12	<10
Densidad (kg/m³)	>1.000	1.000 - 1.400	>1.120
Contenido en cenizas(% peso)	< 6	< 1,5	< 0,5
Longitud (mm)	< 7 x diámetro	< 50	< 5 x diámetro
Diámetro (mm)	< 12	4 - 10	< 8

Fuente: Elaboración propia, basada en normas DIN Y ÖNORM 7135 para pélets

Caso 4. Matadero municipal (xii)

- ☐ ¿Qué tipo de biomasa utilizaría?
 - Hueso de aceituna.

Tabla 5: Características del hueso de aceituna.

HUESO DE ACEITUNA		
Humedad	10	
Densidad aparente (kg/m³)	650 - 700	
P.C.I. b.s. (kJ/kg)	18.000 - 19.000	
P.C.I. b.s. (kWh/kg)	5,0 – 5,3	

Fuente: Bioliza

Caso 4. Matadero municipal (xiii)

el proyecto?

¿Cómo acometería el inicio del estudio?
 ¿Qué cambios plantearía?
 ¿Qué tipo de biomasa utilizaría?
 Una vez analizada la demanda térmica real de la industria, ¿Cuánta biomasa se necesitaría?
 ¿Cuáles serían los costes anuales de la biomasa?
 ¿Qué tipo de tecnología de combustión instalaría?
 ¿Qué volumen de almacenamiento se necesita en función de una autonomía fijada?
 ¿Qué tipo de silo utilizaría para almacenar la biomasa?

Es rentable económicamente el proyecto?

Dada una inversión, ¿Sería viable técnicamente acometer

Caso 4. Matadero municipal (xiv)

La facturación promedio objeto del análisis del estudio es la siguiente:

	Jul 2014	Ago 2014	<u>Sep 2014</u>	Oct 2014	Nov 2014	Dic 2014	Ene 2015	Feb 2015	Mar 2015	Abr 2015	May 2015	Jun 2015	TOTAL
Consumo G.N (m³)	32.658	26.720	29.854	30.697	29.364	36.728	36.753	39.411	39.038	38.372	36.826	35.495	411.916
Conversión a kWh (kWh/m³)	11,705	11,807	11,735	11,760	11,771	11,784	11,764	11,657	11,734	11,631	11,653	11,665	11,718
Consumo G.N (kWh)	382.278	315.492	350.331	360.985	345.653	432.786	432.353	459.427	458.084	446.304	429.131	414.044	4.826.868
Coste kWh (€/kWh)	0,0336	0,0336	0,0336	0,0336	0,0336	0,0336	0,0351	0,0373	0,0373	0,0334	0,0294	0,0294	0,0337
TÉRMINO DE ENERGÍA (€)	12.838,31	10.595,39	11.765,41	12.123,21	11.608,31	14.534,56	15.180,53	17.151,01	17.100,87	14.895,49	12.624,65	12.180,80	162.598,53
Qd contratada (kWh)	34.843	34.843	34.843	34.843	34.843	34.843	34.843	34.843	34.843	34.843	34.843	34.843	34.843
Qd máximo (kWh)	21.001	20.160	20.182	21.643	21.117	27.538	27.818	0	0	0	24.996	26.086	23.393
Qd aplicado (kWh)	34.843	34.843	34.843	34.843	34.843	34.843	34.843	34.843	34.843	34.843	34.843	34.843	34.843
Coste kWh (€/día/mes)	0,0991	0,0991	0,0991	0,0991	0,0958	0,0991	0,1439	0,0991	0,0991	0,0991	0,0991	0,0991	0,1026
TÉRMINO FIJO (€)	3.454,44	3.454,44	3.454,44	3.454,44	3.339,29	3.454,44	5.014,51	3.454,44	3.454,44	3.454,44	3.454,44	3.454,44	42.898,19
Equipos telemedida (€/mes)	77,43	77,43	77,43	77,43	77,43	77,43	155,69	79,30	79,30	79,30	79,30	79,30	1.016,77
Impuesto Hidrocarburos (€)	206,43	170,37	189,18	194,93	186,65	233,70	232,89	248,09	247,37	1.044,35	1.004,17	968,86	4.926,99
I.V.A (€)	3.481,09	3.002,50	3.252,16	3.328,50	3.194,45	3.843,03	4.322,56	4.395,90	4.385,22	4.089,45	3.604,14	3.503,51	44.402,50
IMPUESTOS (€)	3.764,95	3.250,30	3.518,77	3.600,86	3.458,53	4.154,16	4.711,14	4.723,29	4.711,89	5.213,10	4.687,61	4.551,67	50.346,26
FACTURACIÓN TOTAL (€)	20.057,70	17.300,13	18.738,62	19.178,51	18.406,13	22.143,15	24.906,18	25.328,73	25.267,20	23.563,03	20.766,69	20.186,92	255.842,98

El ratio bruto y energético actual de la instalación de Gas Natural (G.N) en €/kWh es el que sigue;

Ratio bruto G. N (€/kWh)	0,0525	0,0548	0,0535	0,0531	0,0533	0,0512	0,0576	0,0551	0,0552	0,0528	0,0484	0,0488
Ratio energía G. N (€/kWh)	0,0336	0,0336	0,0336	0,0336	0,0336	0,0336	0,0351	0,0373	0,0373	0,0334	0,0294	0,0294

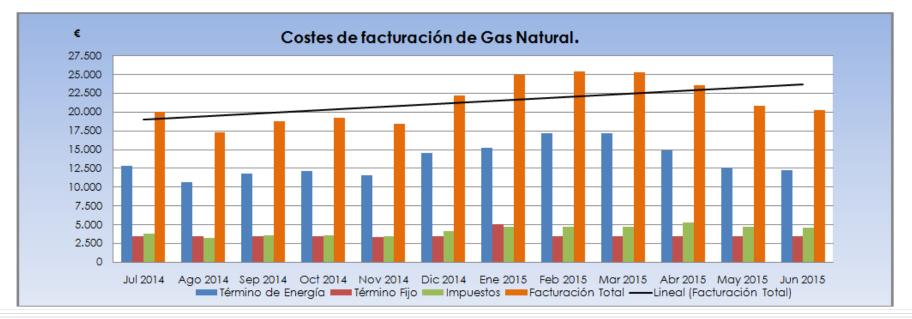

Caso 4. Matadero municipal (xv)

GRÁFICO DE COSTES DE FACTURACIÓN

	Jul 2014	Ago 2014	Sep 2014	Oct 2014	Nov 2014	Dic 2014	Ene 2015	Feb 2015	Mar 2015	Abr 2015	May 2015	Jun 2015	TOTAL
TÉRMINO DE ENERGÍA (€)	12.838,31	10.595,39	11.765,41	12.123,21	11.608,31	14.534,56	15.180,53	17.151,01	17.100,87	14.895,49	12.624,65	12.180,80	162.598,53
TÉRMINO FIJO (€)	3.454,44	3.454,44	3.454,44	3.454,44	3.339,29	3.454,44	5.014,51	3.454,44	3.454,44	3.454,44	3.454,44	3.454,44	42.898,19
IMPUESTOS (€)	3.764,95	3.250,30	3.518,77	3.600,86	3.458,53	4.154,16	4.711,14	4.723,29	4.711,89	5.213,10	4.687,61	4.551,67	50.346,26
FACTURACIÓN TOTAL (€)	20.057,70	17.300,13	18.738,62	19.178,51	18.406,13	22.143,15	24.906,18	25.328,73	25.267,20	23.563,03	20.766,69	20.186,92	255.842,98

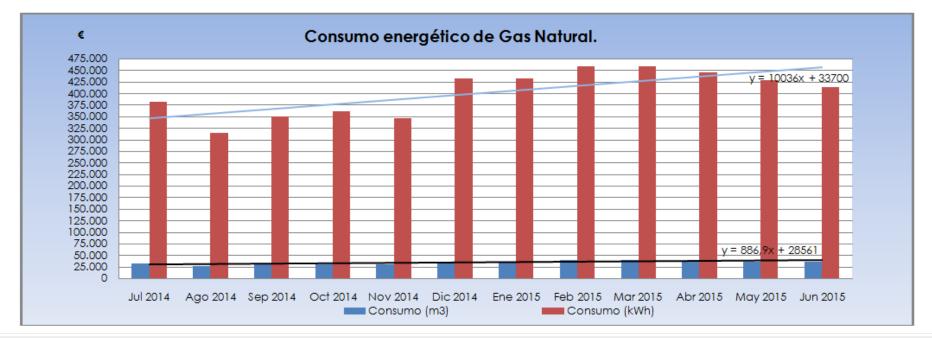

Caso 4. Matadero municipal (xvi)

GRÁFICO DE CONSUMOS ENERGÉTICOS

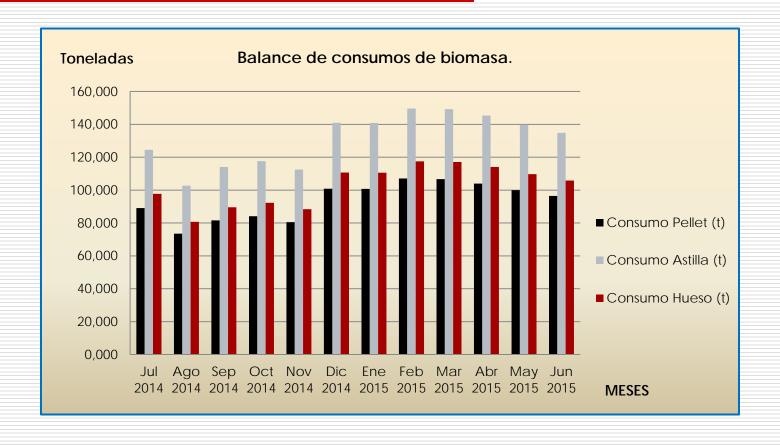
	Jul 2014	Ago 2014	Sep 2014	Oct 2014	Nov 2014	Dic 2014	Ene 2015	Feb 2015	Mar 2015	Abr 2015	May 2015	<u>Jun</u> 2015	TOTAL
Consumo G.N (m³)	32.658	26.720	29.854	30.697	29.364	36.728	36.753	39.411	39.038	38.372	36.826	35.495	411.916
Consumo G.N (kWh)	382.278	315.492	350.331	360.985	345.653	432.786	432.353	459.427	458.084	446.304	429.131	414.044	4.826.868

Caso 4. Matadero municipal (xvii)

- Para el cálculo del consumo de biomasa y los costes anuales se tendrá en cuenta:
 - Consumo energético anual: 4.826.868 kWh
 - Caldera con economizador (η=91%): 175.245 €
 - Caldera sin economizador (η=87%): 152.745 €
 - P.C.I Pellet: 4,85 kWh/kg
 - P.C.I Astilla: 3,47 kWh/kg
 - P.C.I Hueso: 4,42 kWh/kg
 - Precio Pellet: 196 €/t
 - Precio Astilla: 85 €/t
 - Precio Hueso: 130 €/t

Caso 4. Matadero municipal (xviii)

CALDERA SIN ECONOMIZADOR (n=87%)


	<u>Jul</u> 2014	Ago 2014	Sep 2014	Oct 2014	Nov 2014	Dic 2014	Ene 2015	Feb 2015	Mar 2015	Abr 2015	May 2015	Jun 2015	TOTAL
Consumo Gas Natural (kWh)	382.278	315.492	350.331	360.985	345.653	432.786	432.353	459.427	458.084	446.304	429.131	414.044	4.826.868
P.C.I Pellet (kWh/kg)	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	
Humedad Pellet (% peso)	8	8	8	8	8	8	8	8	8	8	8	8	
Consumo Pellet (t)	78,820	65,050	72,233	74,430	71,269	89,234	89,145	94,727	94,450	92,021	88,481	85,370	995,231
Consumo Pellet S/rdto caldera (t)	89,067	73,506	81,624	84,106	80,534	100,835	100,734	107,042	106,729	103,984	99,983	96,468	1.124,610
Coste Pellet (€/t)	196	196	196	196	196	196	196	196	196	196	196	196	
Gasto en Pellet (€)	17.457,10	14.407,25	15.998,21	16.484,73	15.784,58	19.763,60	19.743,82	20.980,18	20.918,85	20.380,91	19.596,69	18.907,72	220.423,65
RATIO PELLET (€/kWh)	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457
P.C.I Astilla Forestal (kWh/kg)	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	
Humedad Astilla (% peso)	30	30	30	30	30	30	30	30	30	30	30	30	
Consumo Astilla (t)	110,167	90,920	100,960	104,030	99,612	124,722	124,597	132,400	132,013	128,618	123,669	119,321	1.391,028
Consumo Astilla S/rdto caldera(t)	124,488	102,739	114,085	117,554	112,561	140,936	140,795	149,612	149,174	145,338	139,746	134,833	1.571,862
Coste Astilla (€/t)	85	85	85	85	85	85	85	85	85	85	85	85	
Gasto en Astilla (€)	10.581,50	8.732,85	9.697,20	9.992,11	9.567,71	11.979,57	11.967,58	12.716,99	12.679,82	12.353,75	11.878,40	11.460,79	133.608,26
RATIO ASTILLA (€/kWh)	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277
P.C.I Hueso de Aceituna (kWh/kg)	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	
Humedad Hueso (% peso)	9	9	9	9	9	9	9	9	9	9	9	9	
Consumo Hueso (t)	86,488	71,378	79,260	81,671	78,202	97,915	97,817	103,943	103,639	100,974	97,088	93,675	1.092,052
Consumo Hueso S/rdto caldera(t)	97,732	80,657	89,564	92,288	88,368	110,644	110,534	117,455	117,112	114,100	109,710	105,853	1.234,018
Coste Hueso (€/t)	130	130	130	130	130	130	130	130	130	130	130	130	
Gasto en Hueso (€)	12.705,12	10.485,47	11.643,35	11.997,44	11.487,88	14.383,77	14.369,38	15.269,19	15.224,56	14.833,04	14.262,30	13.760,87	160.422,38
RATIO HUESO ACEITUNA (€/kWh)	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332
Rendimiento caldera (%)	87							·					

Caso 4. Matadero municipal (xix)

Caso 4. Matadero municipal (xx)

- Para satisfacer los 4.826.868 kWh térmicos consumidos con gas natural, se necesitaría la siguiente biomasa para una tecnología de combustión sin economizador:
 - Pellets: 1.124,610 toneladas/año con un coste total de 220.423,65 €.
 - Astilla: 1.571,862 toneladas/año con un coste total de 133.608,26 €.
 - Hueso de aceituna: 1.234,018 toneladas/año con un coste total de 160.422,38 €.

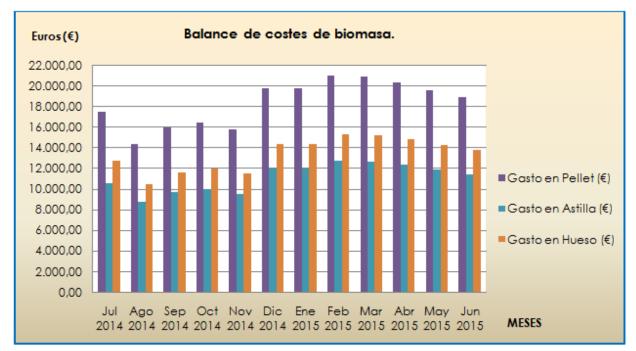
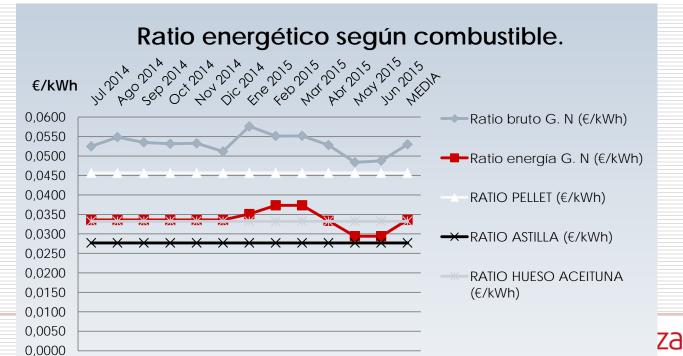

Caso 4. Matadero municipal (xxi)

GRÁFICO DE COSTES SEGÚN COMBUSTIBLE

		Jul 2014	Ago 2014	Sep 2014	Oct 2014	Nov 2014	Dic 2014	Ene 2015	Feb 2015	Mar 2015	Abr 2015	May 2015	<u>Jun</u> 2015	TOTAL	DIFERENCIA
F	ACTURACIÓN TOTAL (€)	20.057,70	17.300,13	18.738,62	19.178,51	18.406,13	22.143,15	24.906,18	25.328,73	25.267,20	23.563,03	20.766,69	20.186,92	255.842,98	0,00
G	iasto en Pellet (€)	17.457,10	14.407,25	15.998,21	16.484,73	15.784,58	19.763,60	19.743,82	20.980,18	20.918,85	20.380,91	19.596,69	18.907,72	220.423,65	35.419,33
G	iasto en Hueso (€)	12.705,12	10.485,47	11.643,35	11.997,44	11.487,88	14.383,77	14.369,38	15.269,19	15.224,56	14.833,04	14.262,30	13.760,87	160.422,38	95.420,60
G	iasto en Astilla (€)	10.581,50	8.732,85	9.697,20	9.992,11	9.567,71	11.979,57	11.967,58	12.716,99	12.679,82	12.353,75	11.878,40	11.460,79	133.608,26	122.234,72

Caso 4. Matadero municipal (xxii)

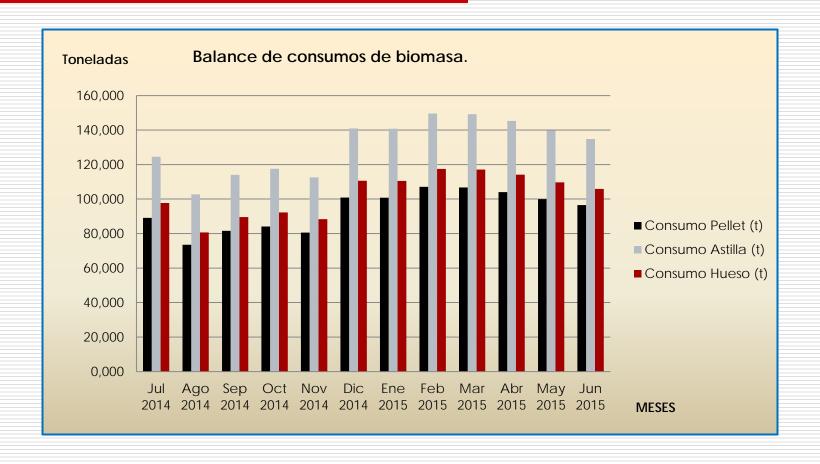


46

GRÁFICO DEL RATIO ENERGÉTICO SEGÚN COMBUSTIBLE

	<u>Jul</u> 2014	Ago 2014	Sep 2014	Oct 2014	Nov 2014	Dic 2014	Ene 2015	Eeb 2015	Mar 2015	Abr 2015	Max 2015	<u>Jun</u> 2015	MEDIA
Ratio bruto G. N (€/kWh)	0,0525	0,0548	0,0535	0,0531	0,0533	0,0512	0,0576	0,0551	0,0552	0,0528	0,0484	0,0488	0,0530
Ratio energía G. N (€/kWh)	0,0336	0,0336	0,0336	0,0336	0,0336	0,0336	0,0351	0,0373	0,0373	0,0334	0,0294	0,0294	0,0336
RATIO PELLET (€/kWh)	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457
RATIO ASTILLA (€/kWh)	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277
RATIO HUESO ACEITUNA (€/kWh)	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332

Caso 4. Matadero municipal (xxiii)


CALDERA CON ECONOMIZADOR (n=91%)

	<u>Jul</u> 2014	Ago 2014	Sep 2014	Oct 2014	Nov 2014	Dic 2014	Ene 2015	Feb 2015	Mar 2015	Abr 2015	May 2015	Jun 2015	TOTAL
Consumo Gas Natural (kWh)	382.278	315.492	350.331	360.985	345.653	432.786	432.353	459.427	458.084	446.304	429.131	414.044	4.826.868
P.C.I Pellet (kWh/kg)	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	
Humedad Pellet (% peso)	8	8	8	8	8	8	8	8	8	8	8	8	
Consumo Pellet (t)	78,820	65,050	72,233	74,430	71,269	89,234	89,145	94,727	94,450	92,021	88,481	85,370	995,231
Consumo Pellet S/ <u>rdto</u> caldera (t)	85,914	70,904	78,734	81,129	77,683	97,265	97,168	103,253	102,951	100,303	96,444	93,053	1.084,801
Coste Pellet (€/t)	196	196	196	196	196	196	196	196	196	196	196	196	
Gasto en Pellet (€)	16.839,15	13.897,26	15.431,90	15.901,20	15.225,84	19.064,00	19.044,93	20.237,52	20.178,36	19.659,46	18.903,00	18.238,42	212.621,05
RATIO PELLET (€/kWh)	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440
P.C.I Astilla Forestal (kWh/kg)	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	
Humedad Astilla (% peso)	30	30	30	30	30	30	30	30	30	30	30	30	
Consumo Astilla (t)	110,167	90,920	100,960	104,030	99,612	124,722	124,597	132,400	132,013	128,618	123,669	119,321	1.391,028
Consumo Astilla S/rdto caldera(t)	120,082	99,103	110,046	113,393	108,577	135,947	135,811	144,316	143,894	140,193	134,799	130,060	1.516,221
Coste Astilla (€/t)	85	85	85	85	85	85	85	85	85	85	85	85	
Gasto en Astilla (€)	10.206,93	8.423,73	9.353,94	9.638,40	9.229,03	11.555,51	11.543,95	12.266,83	12.230,97	11.916,45	11.457,92	11.055,09	128.878,77
RATIO ASTILLA (€/kWh)	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267
P.C.I Hueso de Aceituna (kWh/kg)	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	
Humedad Hueso (% peso)	9	9	9	9	9	9	9	9	9	9	9	9	
Consumo Hueso (t)	86,488	71,378	79,260	81,671	78,202	97,915	97,817	103,943	103,639	100,974	97,088	93,675	1.092,052
Consumo Hueso S/rdto caldera(t)	94,272	77,802	86,394	89,021	85,240	106,728	106,621	113,298	112,966	110,061	105,826	102,106	1.190,336
Coste Hueso (€/t)	130	130	130	130	130	130	130	130	130	130	130	130	
Gasto en Hueso (€)	12.255,38	10.114,30	11.231,20	11.572,75	11.081,23	13.874,61	13.860,73	14.728,69	14.685,63	14.307,98	13.757,44	13.273,76	154.743,71
RATIO HUESO ACEITUNA (€/kWh)	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321
Rendimiento caldera (%)	91												

Caso 4. Matadero municipal (xxiv)

Caso 4. Matadero municipal (xxv)

- Para una tecnología de combustión con economizador, aumenta el rendimiento de la caldera un 4%, por lo que para satisfacer los 4.826.868 kWh térmicos consumidos con gas natural, se necesitaría una cantidad ligeramente inferior de biomasa, incidiendo proporcionalmente en los costes anuales, ratios energéticos y necesidades de biomasa en peso y volumen.
 - Pellets: 1.084,801 toneladas/año con un coste total de 212.621,05 €.
 - Astilla: 1.516,221 toneladas/año con un coste total de 128.878,77 €.
 - Hueso de aceituna: 1.190,336 toneladas/año con un coste total de 154.743,71 €.

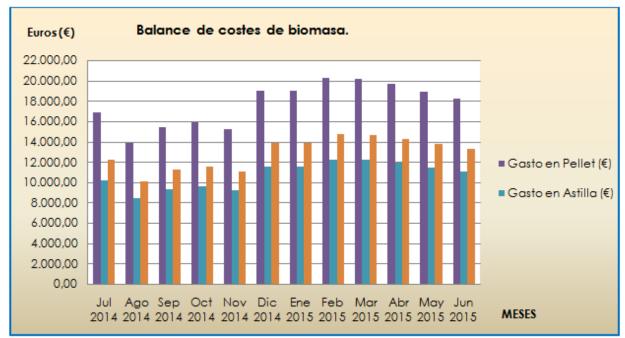

Caso 4. Matadero municipal (xxvi)

GRÁFICO DE COSTES SEGÚN COMBUSTIBLE

	Jul 2014	Ago 2014	Sep 2014	Oct 2014	Nov 2014	Dic 2014	Ene 2015	Feb 2015	Mar 2015	Abr 2015	May 2015	<u> </u>	TOTAL	DIFERENCIA
FACTURACIÓN TOTAL (€)	20.057,70	17.300,13	18.738,62	19.178,51	18.406,13	22.143,15	24.906,18	25.328,73	25.267,20	23.563,03	20.766,69	20.186,92	255.842,98	0,00
Gasto en Pellet (€)	16.839,15	13.897,26	15.431,90	15.901,20	15.225,84	19.064,00	19.044,93	20.237,52	20.178,36	19.659,46	18.903,00	18.238,42	212.621,05	43.221,94
Gasto en Hueso (€)	12.255,38	10.114,30	11.231,20	11.572,75	11.081,23	13.874,61	13.860,73	14.728,69	14.685,63	14.307,98	13.757,44	13.273,76	154.743,71	101.099,27
Gasto en Astilla (€)	10.206,93	8.423,73	9.353,94	9.638,40	9.229,03	11.555,51	11.543,95	12.266,83	12.230,97	11.916,45	11.457,92	11.055,09	128.878,77	126.964,22

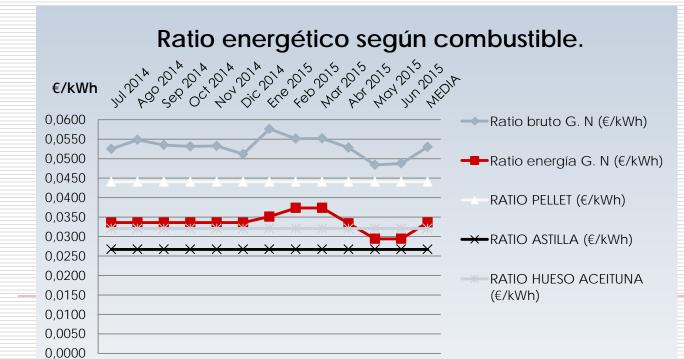

Caso 4. Matadero municipal (xxvii)

GRÁFICO DEL RATIO ENERGÉTICO SEGÚN COMBUSTIBLE

	<u>Jul</u> 2014	Ago. 2014	Sep 2014	Oct 2014	Nov 2014	Dic 2014	Ene 2015	Feb 2015	Mar 2015	Abr 2015	Max 2015	<u>Jun</u> 2015	MEDIA
Ratio bruto G. N (€/kWh)	0,0525	0,0548	0,0535	0,0531	0,0533	0,0512	0,0576	0,0551	0,0552	0,0528	0,0484	0,0488	0,0530
Ratio energía G. N (€/kWh)	0,0336	0,0336	0,0336	0,0336	0,0336	0,0336	0,0351	0,0373	0,0373	0,0334	0,0294	0,0294	0,0336
RATIO PELLET (€/kWh)	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440
RATIO ASTILLA (€/kWh)	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267
RATIO HUESO ACEITUNA (€/kWh)	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321

Caso 4. Matadero municipal (xxviii)

- ¿Cómo acometería el inicio del estudio?
- ¿Qué cambios plantearía?
- ☐ ¿Qué tipo de biomasa utilizaría?
- Una vez analizada la demanda térmica real de la industria, ¿Cuánta biomasa se necesitaría?
- ¿Cuáles serían los costes anuales de la biomasa?
- ¿Qué tipo de tecnología de combustión instalaría?
- ¿Qué volumen de almacenamiento se necesita en función de una autonomía fijada?
- ¿Qué tipo de silo utilizaría para almacenar la biomasa?
- Dada una inversión, ¿Sería viable técnicamente acometer el proyecto?
- ¿Es rentable económicamente el proyecto?

Caso 4. Matadero municipal (xxix)

- □ ¿Qué tipo de tecnología de combustión instalaría?
 - Con economizador.
 - Sin economizador.
- Se trata de un economizador de calor de alta eficiencia, de tipo pirotubular vertical, autolimpiante, no necesita operación manual para su gestión y mantenimiento.
- □ El agua de alimentación de la caldera circula exteriormente por tubos originando una disminución de temperatura de los gases de 250°C a 140°C, recuperando 179 kW térmicos.
- Ventajas:
- Aumento del rendimiento debido a mayor optimización energética.
- □ Reduce ligeramente las necesidades de biomasa y por consiguiente el coste anual de la misma.
- Inconvenientes:
- Aumenta el valor de la inversión en 22.500 €.

Caso 4. Matadero municipal (xxx)

- ¿Cómo acometería el inicio del estudio?
- ¿Qué cambios plantearía?
- ☐ ¿Qué tipo de biomasa utilizaría?
- Una vez analizada la demanda térmica real de la industria, ¿Cuánta biomasa se necesitaría?
- ¿Cuáles serían los costes anuales de la biomasa?
- ¿Qué tipo de tecnología de combustión instalaría?
- ¿Qué volumen de almacenamiento se necesita en función de una autonomía fijada?
- ¿Qué tipo de silo utilizaría para almacenar la biomasa?
- Dada una inversión, ¿Sería viable técnicamente acometer el proyecto?
- ¿Es rentable económicamente el proyecto?

Caso 4. Matadero municipal (xxxi)

CALDERA SIN ECONOMIZADOR (n=87%)

	<u>Jul</u> 2014	Ago 2014	Sep 2014	Oct 2014	Nov 2014	Dic 2014	Ene 2015	Feb 2015	Mar 2015	Abr 2015	May 2015	<u>Jun</u> 2015	TOTAL
Consumo Gas Natural (kWh)	382.278	315.492	350.331	360.985	345.653	432.786	432.353	459.427	458.084	446.304	429.131	414.044	4.826.868
P.C.I Pellet (kWh/kg)	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	
Humedad Pellet (% peso)	8	8	8	8	8	8	8	8	8	8	8	8	
Consumo Pellet (t)	78,820	65,050	72,233	74,430	71,269	89,234	89,145	94,727	94,450	92,021	88,481	85,370	995,231
Consumo Pellet S/rdto caldera (t)	89,067	73,506	81,624	84,106	80,534	100,835	100,734	107,042	106,729	103,984	99,983	96,468	1.124,610
Coste Pellet (€/t)	196	196	196	196	196	196	196	196	196	196	196	196	
Gasto en Pellet (€)	17.457,10	14.407,25	15.998,21	16.484,73	15.784,58	19.763,60	19.743,82	20.980,18	20.918,85	20.380,91	19.596,69	18.907,72	220.423,65
RATIO PELLET (€/kWh)	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457	0,0457
P.C.I Astilla Forestal (kWh/kg)	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	
Humedad Astilla (% peso)	30	30	30	30	30	30	30	30	30	30	30	30	
Consumo Astilla (t)	110,167	90,920	100,960	104,030	99,612	124,722	124,597	132,400	132,013	128,618	123,669	119,321	1.391,028
Consumo Astilla S/rdto caldera(t)	124,488	102,739	114,085	117,554	112,561	140,936	140,795	149,612	149,174	145,338	139,746	134,833	1.571,862
Coste Astilla (€/t)	85	85	85	85	85	85	85	85	85	85	85	85	
Gasto en Astilla (€)	10.581,50	8.732,85	9.697,20	9.992,11	9.567,71	11.979,57	11.967,58	12.716,99	12.679,82	12.353,75	11.878,40	11.460,79	133.608,26
RATIO ASTILLA (€/kWh)	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277	0,0277
P.C.I Hueso de Aceituna (kWh/kg)	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	
Humedad Hueso (% peso)	9	9	9	9	9	9	9	9	9	9	9	9	
Consumo Hueso (t)	86,488	71,378	79,260	81,671	78,202	97,915	97,817	103,943	103,639	100,974	97,088	93,675	1.092,052
Consumo Hueso S/rdto caldera(t)	97,732	80,657	89,564	92,288	88,368	110,644	110,534	117,455	117,112	114,100	109,710	105,853	1.234,018
Coste Hueso (€/t)	130	130	130	130	130	130	130	130	130	130	130	130	
Gasto en Hueso (€)	12.705,12	10.485,47	11.643,35	11.997,44	11.487,88	14.383,77	14.369,38	15.269,19	15.224,56	14.833,04	14.262,30	13.760,87	160.422,38
RATIO HUESO ACEITUNA (€/kWb)	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332	0,0332
Rendimiento caldera (%)	87			·				·					

Caso 4. Matadero municipal (xxxii)

Sin economizador.

VOLUMEN DE ALMACENAMIE	NTO/AU	TONOMÍ	Ą
Combustible	Pellet	Hueso	Astilla
Densidad (kg/m³)	650	725	275
Mayor demanda mensual (t/mes)	107,042	117,455	149,612
Volumen necesario (m³/mes)	164,68	162,01	544,04
Volumen del Silo según a	utonomía	n. (m³)	
Autonomía del Silo	Pellet	Hueso	Astilla
5 días	27,45	27,00	90,67
10 días	54,89	54,00	181,35
15 días	82,34	81,00	272,02
20 días	109,79	108,00	362,69
25 días	137,23	135,01	453,37
30 días	164,68	162,01	544,04

Caso 4. Matadero municipal (xxxiii)

CALDERA CON ECONOMIZADOR (η=91%)

	<u>Jul</u> 2014	Ago 2014	Sep 2014	Oct 2014	Nov 2014	Dic 2014	Ene 2015	Feb 2015	Mar 2015	Abr 2015	May 2015	Jun 2015	TOTAL
Consumo Gas Natural (kWh)	382.278	315.492	350.331	360.985	345.653	432.786	432.353	459.427	458.084	446.304	429.131	414.044	4.826.868
P.C.I Pellet (kWh/kg)	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	4,85	
Humedad Pellet (% peso)	8	8	8	8	8	8	8	8	8	8	8	8	
Consumo Pellet (t)	78,820	65,050	72,233	74,430	71,269	89,234	89,145	94,727	94,450	92,021	88,481	85,370	995,231
Consumo Pellet S/ <u>rdto</u> caldera (t)	85,914	70,904	78,734	81,129	77,683	97,265	97,168	103,253	102,951	100,303	96,444	93,053	1.084,801
Coste Pellet (€/t)	196	196	196	196	196	196	196	196	196	196	196	196	
Gasto en Pellet (€)	16.839,15	13.897,26	15.431,90	15.901,20	15.225,84	19.064,00	19.044,93	20.237,52	20.178,36	19.659,46	18.903,00	18.238,42	212.621,05
RATIO PELLET (€/kWh)	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440	0,0440
P.C.I Astilla Forestal (kWh/kg)	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	
Humedad Astilla (% peso)	30	30	30	30	30	30	30	30	30	30	30	30	
Consumo Astilla (t)	110,167	90,920	100,960	104,030	99,612	124,722	124,597	132,400	132,013	128,618	123,669	119,321	1.391,028
Consumo Astilla S/rdto caldera(t)	120,082	99,103	110,046	113,393	108,577	135,947	135,811	144,316	143,894	140,193	134,799	130,060	1.516,221
Coste Astilla (€/t)	85	85	85	85	85	85	85	85	85	85	85	85	
Gasto en Astilla (€)	10.206,93	8.423,73	9.353,94	9.638,40	9.229,03	11.555,51	11.543,95	12.266,83	12.230,97	11.916,45	11.457,92	11.055,09	128.878,77
RATIO ASTILLA (€/kWh)	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267	0,0267
P.C.I Hueso de Aceituna (kWh/kg)	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	
Humedad Hueso (% peso)	9	9	9	9	9	9	9	9	9	9	9	9	
Consumo Hueso (t)	86,488	71,378	79,260	81,671	78,202	97,915	97,817	103,943	103,639	100,974	97,088	93,675	1.092,052
Consumo Hueso S/rdto caldera(t)	94,272	77,802	86,394	89,021	85,240	106,728	106,621	113,298	112,966	110,061	105,826	102,106	1.190,336
Coste Hueso (€/t)	130	130	130	130	130	130	130	130	130	130	130	130	
Gasto en Hueso (€)	12.255,38	10.114,30	11.231,20	11.572,75	11.081,23	13.874,61	13.860,73	14.728,69	14.685,63	14.307,98	13.757,44	13.273,76	154.743,71
RATIO HUESO ACEITUNA (€/kWh)	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321	0,0321
Rendimiento caldera (%)	91												

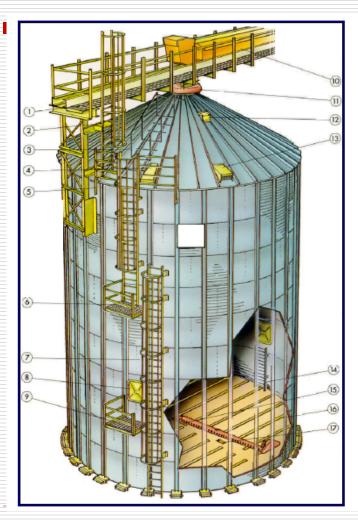
Caso 4. Matadero municipal (xxxiv)

Con economizador.

T I

VOLUMEN DE ALMACENAMI	ENTO / AU	TONOMI	Α	
Combustible	Pellet	Hueso	Astilla	
Densidad (kg/m³)	650	725	275	
Mayor demanda mensual (t/mes)	103,253	113,298	144,316	
Volumen necesario (m³/mes)	158,85	156,27	524,78	
Volumen del Silo según autonomía. (m³)				
Autonomía del Silo	Pellet	Hueso	Astilla	
5 días	26,48	26,05	87,46	
10 días	52,95	52,09	174,93	
15 días	79,43	78,14	262,39	
20 días	105,90	104,18	349,86	
25 días	132,38	130,23	437,32	
30 días	158,85	156,27	524,78	
30 dia3	130,03	130,27	324,70	

Caso 4. Matadero municipal (xxxv)


- ¿Cómo acometería el inicio del estudio?
 ¿Qué cambios plantearía?
 ¿Qué tipo de biomasa utilizaría?
 Una vez analizada la demanda térmica real de la industria, ¿Cuánta biomasa se necesitaría?
 ¿Cuáles serían los costes anuales de la biomasa?
 ¿Qué tipo de tecnología de combustión instalaría?
 ¿Qué volumen de almacenamiento se necesita en función
 - ¿Qué tipo de silo utilizaría para almacenar la biomasa?
- Dada una inversión, ¿Sería viable técnicamente acometer el proyecto?
- ¿Es rentable económicamente el proyecto?

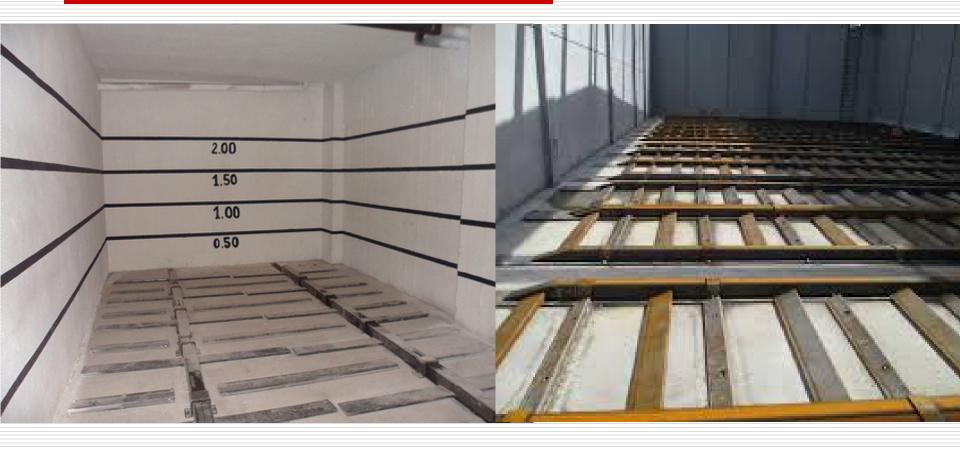
de una autonomía fijada?

Caso 4. Matadero municipal (xxxvi)

Gran variedad de soluciones para todo tipo de granos, harinas, biomasa, como silos sobre pies metálicos, con tolva inferior y boquilla de salida por gravedad o mecanizada, según se precise.

- Pasarela de rejilla en base , galvanizada
- Escalerilla de acceso (a situar en su caso en el soporte lateral)
- Escalerilla de techo con barandilla
- 4. Registro de inspección de techo
- Guardacuerpos
- 6. Plataforma de reposo en el cilindro
- 7. Escalerilla de cilindro con guardacuerpos
- 8. Compuerta de visita de cilindro.
- 9. Plataforma de acceso a compuerta del cilindro
- 10. Transportador de carga
- 11. Cúpula con tapa para acceso de producto
- 12. Soporte de sonda térmica (opción)
- 13. Sombrerete de salida de aire
- 14. Escalerilla interior al cilindro
- 15. Salida de producto (central)
- 16. Conductos de ventilación (opción)
- Salida intermedia de vaciado del residuo de producto (opción)

Caso 4. Matadero municipal (xxxvii)



Caso 4. Matadero municipal (xxxviii)

Caso 4. Matadero municipal (xxxix)

Caso 4. Matadero municipal (xl)

- ¿Cómo acometería el inicio del estudio?
- ¿Qué cambios plantearía?
- ☐ ¿Qué tipo de biomasa utilizaría?
- Una vez analizada la demanda térmica real de la industria, ¿Cuánta biomasa se necesitaría?
- ¿Cuáles serían los costes anuales de la biomasa?
- ¿Qué tipo de tecnología de combustión instalaría?
- ¿Qué volumen de almacenamiento se necesita en función de una autonomía fijada?
- ¿Qué tipo de silo utilizaría para almacenar la biomasa?
- Dada una inversión, ¿Sería viable técnicamente acometer el proyecto?
- ☐ ¿Es rentable económicamente el proyecto?

Caso 4. Matadero municipal (xli)

- BIOMASA.
 - ASTILLAS

Ventajas:

- Coste de producción inferior al de los pélets, debido al menor proceso de industrialización requerido.
- Las astillas de primera clase son de alta calidad.

Inconvenientes:

- Necesitan lugares de almacenamiento y acopio de mayores dimensiones, ya que su densidad es menor que la de los pélets y hueso de aceituna.
- El acopio y la descarga de las astillas requieren de sistemas directos mediante volquetes, no pudiendo ser utilizado en instalaciones con gran longitud de descarga.

Caso 4. Matadero municipal (xlii)

■ BIOMASA.

PÉLETS

Ventajas:

- Dispone de normativa de calidad regulada y estandarizada a nivel europeo.
- Alto poder calorífico.
- Contenido muy bajo en cenizas, por lo que facilita las tareas de operación y mantenimiento.
- Permite el acopio y la descarga en grandes longitudes y en cualquier zona urbana mediante camiones con sistema neumático.

Inconvenientes:

Precio considerablemente superior al hueso de aceituna y a las astillas.

Caso 4. Matadero municipal (xliii)

BIOMASA.

HUESO DE ACEITUNA

Ventajas:

- Gran disponibilidad en diferentes zonas territoriales, gracias a la gran producción de aceite de oliva en el sector agroindustrial.
- Bajo coste de producción, al tratarse de un residuo agroindustrial.
- Gran cantidad de proveedores gracias a la industrialización paulatina de este residuos y al incremento del desarrollo local y regional.
- Valor añadido, minimizando los riesgos ambientales con su gestión.

Inconvenientes:

 Contenido de cenizas es ligeramente superior al pélet, sin incidir notablemente en el mantenimiento de la caldera.

Caso 4. Matadero municipal (xliv)

TECNOLOGÍA.

ECONOMIZADOR EN LA INSTALACIÓN

- Se trata de un economizador de calor de alta eficiencia, de tipo pirotubular vertical, autolimpiante, no necesita operación manual para su gestión y mantenimiento.
- El agua de alimentación de la caldera circula exteriormente por tubos originando una disminución de temperatura de los gases de 250°C a 140°C, recuperando 179 kW térmicos.

Ventajas:

- Aumento del rendimiento debido a mayor optimización energética.
- Reduce ligeramente las necesidades de biomasa y por consiguiente el coste anual de la misma.

Inconvenientes:

Aumenta el valor de la inversión en 22.500 €.

Caso 4. Matadero municipal (xlv)

ALMACENAMIENTO.

SILO VERTICAL DE 80 m³ (ALTURA 10,85 metros)

Ventajas:

- Fácil y rápido de montar e instalar.
- No necesita la ejecución de obra civil de entidad.
- Menor coste de inversión.
- Menor espacio para su instalación en la industria.

Inconvenientes:

- En determinados municipios se limita la altura de estas instalaciones debido al impacto visual y paisajístico.
- Menor polivalencia, ya que únicamente asegura el correcto funcionamiento con combustible granular y homogéneo.

Caso 4. Matadero municipal (xlvi)

ALMACENAMIENTO.

SILO HORIZONTAL DE PISO MÓVIL. (10 x 6 x 3 metros)

Ventajas:

- Asegura el correcto funcionamiento de la instalación en el caso de disponer astilla.
- Es un silo polivalente para cualquier tipo de biocombustible.

Inconvenientes:

- Necesita la realización de obra civil de mayor entidad, lo que supone mayor coste de índole civil.
- Mayor inversión que el silo vertical.
- Necesidad de mayor espacio en la industria, tanto para su instalación como para el acopio de biomasa mediante camiones.

Caso 4. Matadero municipal (xlvii)

de una autonomía fijada?

- ¿Cómo acometería el inicio del estudio?
 ¿Qué cambios plantearía?
 ¿Qué tipo de biomasa utilizaría?
 Una vez analizada la demanda térmica real de la industria, ¿Cuánta biomasa se necesitaría?
 ¿Cuáles serían los costes anuales de la biomasa?
 ¿Qué tipo de tecnología de combustión instalaría?
 ¿Qué volumen de almacenamiento se necesita en función
- ¿Qué tipo de silo utilizaría para almacenar la biomasa?
- ¿Sería viable técnicamente acometer el proyecto?
- Dada una inversión, ¿Es rentable económicamente el proyecto?

Caso 4. Matadero municipal (xlviii)

AMORTIZACIÓN DE LA INVERSIÓN SIN PROYECTOS CLIMA

Caldera sin economizador					
INVERSIÓN DE LA INSTALACIÓN					
Componentes	Pellet	Hueso	Astilla		
Caldera y componentes	152.745,00	152.745,00	152.745,00		
Silo de biomasa	12.000,00	12.000,00	63.000,00		
Sistema de transporte	incl. Silo	incl. Silo	18.000,00		
Obra Civil	1.500,00	1.500,00	10.500,00		
Ingeniería y Legalización	0,00	0,00	0,00		
Proyectos CLIMA	0,00	0,00	0,00		
TOTAL	166.245,00	166.245,00	244.245,00		

GASTO EN COMBUSTIBLE ANUAL					
COSTES	Gas Natural	Pellet	Hueso	Astilla	
Energético (€)	162.598,53	220.423,65	160.422,38	133.608,26	
Término Fijo (€)	42.898,19	0,00	0,00	0,00	
Impuestos S/IVA (€)	5.943,76	0,00	0,00	0,00	
TOTAL(€)	211.440,48	220.423,65	160.422,38	133.608,26	
DIFERENCIA (€)	0,00	-8.983,17	51.018,10	77.832,22	
AMORTIZACIÓN					
Pay-Back Simple (Años)	X	-18,51	3,26	3,14	

Caldera con economizador					
INVERSIÓN DE LA INSTALACIÓN					
Componentes	Pellet	Hueso	Astilla		
Calderay componentes	175.245,00	175.245,00	175.245,00		
Silo de biomasa	12.000,00	12.000,00	63.000,00		
Sistema de transporte	Incl. Silo	Incl. Silo	18.000,00		
Obra Civil	1.500,00	1.500,00	10.500,00		
Ingeniería y Legalización	0,00	0,00	0,00		
Proyectos CLIMA	0,00	0,00	0,00		
TOTAL	188.745,00	188.745,00	266.745,00		

GASTO EN COMBUSTIBLE ANUAL				
COSTES	Gas Natural	Pellet	Hueso	Astilla
Energético (€)	162.598,53	212.621,05	154.743,71	128.878,77
Término Fijo (€)	42.898,19	0,00	0,00	0,00
Impuestos S/IVA (€)	5.943,76	0,00	0,00	0,00
TOTAL(€)	211.440,48	212.621,05	154.743,71	128.878,77
DIFERENCIA (€)	0,00	-1.180,57	56.696,77	82.561,71
AMORTIZACIÓN				
Pay-Back Simple (Años)	x	-159,88	3,33	3,23

Caso 4. Matadero municipal (xlix)

AMORTIZACIÓN DE LA INVERSIÓN CON PROYECTOS CLIMA.

Caldera sin economizador					
INVERSIÓN DE LA INSTALACIÓN					
Componentes	Pellet	Hueso	Astilla		
Calderay componentes	152.745,00	152.745,00	152.745,00		
Silo de biomasa	12.000,00	12.000,00	63.000,00		
Sistema de transporte	incl. Silo	incl. Silo	18.000,00		
Obra Civil	1.500,00	1.500,00	10.500,00		
Ingeniería y Legalización	0,00	0,00	0,00		
Proyectos CLIMA	-43.824,10	-43.824,10	-43.824,10		
TOTAL	122.420,90	122.420,90	200.420,90		

GASTO EN COMBUSTIBLE ANUAL				
COSTES	Gas Natural	Pellet	Hueso	Astilla
Energético (€)	162.598,53	220.423,65	160.422,38	133.608,26
Término Fijo (€)	42.898,19	0,00	0,00	0,00
Impuestos S/IVA (€)	5.943,76	0,00	0,00	0,00
TOTAL(€)	211.440,48	220.423,65	160.422,38	133.608,26
DIFERENCIA (€)	0,00	-8.983,17	51.018,10	77.832,22
AMORTIZACIÓN				
Pay-Back Simple (Años)	X	-13,63	2,40	2,58

Caldera con economizador					
INVERSIÓN DE LA INSTALACIÓN					
Componentes	Pellet	Hueso	Astilla		
Calderay componentes	175.245,00	175.245,00	175.245,00		
Silo de biomasa	12.000,00	12.000,00	63.000,00		
Sistema de transporte	Incl. Silo	Incl. Silo	18.000,00		
Obra Civil	1.500,00	1.500,00	10.500,00		
Ingeniería y Legalización	0,00	0,00	0,00		
Proyectos CLIMA	-43.824,10	-43.824,10	-43.824,10		
TOTAL	144.920,90	144.920,90	222.920,90		

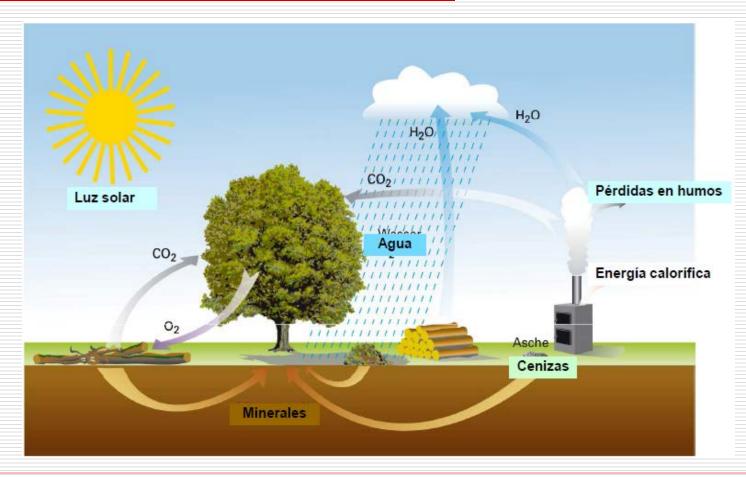
GASTO EN COMBUSTIBLE ANUAL				
COSTES	Gas Natural	Pellet	Hueso	Astilla
Energético (€)	162.598,53	212.621,05	154.743,71	128.878,77
Término Fijo (€)	42.898,19	0,00	0,00	0,00
Impuestos S/IVA (€)	5.943,76	0,00	0,00	0,00
TOTAL(€)	211.440,48	212.621,05	154.743,71	128.878,77
DIFERENCIA (€)	0,00	-1.180,57	56.696,77	82.561,71
AMORTIZACIÓN				
Pay-Back Simple (Años)	X	-122,76	2,56	2,70

- Actualmente existen unos incentivos públicos aprobados por el MAGRAMA, llamados "Proyectos Clima". Estos incentivos son un instrumento nacional de financiación cuyo objetivo es reorientar la actividad económica hacia modelos bajos en carbono y contribuir así a los objetivos españoles de reducción de emisiones.
- Moviliza recursos y elimina barreras de inversión privada mediante el pago de 9,70 € por tonelada de CO₂ equivalente reducida.
- En el caso en el que el promotor de esta instalación implantara el sistema de generación térmica mediante biomasa, ¿Qué ingresos obtendría por reducción de emisiones?

Etapa	Descripción	Fecha	Documento generado
1	Presentación de muestras de interés (PIN)	15 Febrero 2016 – 15 Abril 2016	Nota de Idea de Proyecto (PIN)
	Preselección de los PIN	Abril – Mayo 2016	Listado de proyectos preseleccionados
	Elaboración del Documento de Proyecto	Junio – Julio 2016	Documento de Proyecto y Plan de Seguimiento (DP, PS)
2	Valoración de los proyectos por parte de la OECC	Agosto – Noviembre 2016	Listado definitivo de proyectos seleccionados
	Formalización de contratos de compraventa	Enero 2017	Contrato de compra
	Inicio de operación del proyecto	-	-
3	Seguimiento (monitoreo y verificación)	01/01/2017 - 31/12/2020	Informe de Seguimiento e Informe de Verificación
3	Pagos	Junio de 2018, 2019, 2020 y 2021	Certificado de Reconocimiento de Reducciones de emisiones verificadas

Fase de pre-selección. La Convocatoria de Proyectos Clima, para la presentación de nuevos proyectos, está abierta desde el mes de febrero hasta el mes de abril. Durante este periodo se recopila información básica de cada proyecto para poder redactar el documento de muestra de interés (PIN) y adherirlo a la convocatoria. Tras una primera evaluación del Proyecto, que abarca alrededor de dos meses, la Oficina Española de Cambio Climático (OECC) aprueba o desestima su continuación en el proceso.

Fase de selección final. Se presenta formalmente el Proyecto a la convocatoria, para lo que es necesario desarrollar el **Documento de Proyecto (DP)**, en el que se describe el Proyecto detalladamente, se calcula la Reducción de Emisiones (RE) según la metodología aprobada y se redacta el **Plan de Seguimiento**. Este proceso finaliza a finales de Julio de 2016. Posteriormente la OECC valora los proyectos durante 5 meses y aprueba los proyectos seleccionados, publicando la lista en el mes de Diciembre de 2016. Una vez conocida la selección del proyecto presentado, se formaliza el contrato de compra con el MAGRAMA para los siguientes cuatro años.


Fase de operación del proyecto y compraventa del carbono. Tras la puesta en marcha del proyecto y durante 4 años, se llevará a cabo el **seguimiento y monitoreo del proyecto**, realizando las siguientes tareas:

- Coordinación del Plan de Seguimiento.
- □ Recopilación de los parámetros a monitorizar definidos por la metodología utilizada y recogidos en el Plan de Seguimiento.
- Análisis de calidad de los datos.
- Cálculo de las toneladas de CO₂ reducidas en cada año.
- □ Redacción del Informe de Seguimiento anual que será utilizado en la Verificación por una entidad acreditada.
- Interlocución con la entidad acreditada para coordinar el proceso de verificación (visita, asistencia técnica, resolución de no conformidades, etc.)
- Interlocución con el Fondo de Carbono (FES-CO2) para la realización de los pagos pertinentes.

Gases de Efecto Invernadero (GEIs)						
GAS	FÓRMULA	EQUIVALENCIA CO ₂				
Dióxido de carbono	CO ₂	1				
Metano	CH ₄	23				
Óxido nitroso	N_2O	296				
Hidrofluorocarburos (HFCs)	$C_xH_yF_z$	12 a12.000				
Perfluorocarburos (PFCs)	C_xF_y	5.700 a 11.900				
Hexafluoruro de azufre	SF ₆	22.200				

Fuente: Grupo Intergubernamental de Expertos sobre el Cambio Climático –IPCC- (3er Informe de Evaluación – Cambio Climático 2001)

Tabla: CO₂ equivalente por kWh.

COMBUSTIBLE	Kg CO ₂ eg / kWh E. final	
Gas natural.	0,252	
Biomasa densificada (pelets).	0,018	
Biomasa.	0,018	

Fuente: Joint Research Institute.

BALANCE DE EMISIONES

Tabla: Balance de emisiones de la instalación.

COMBUSTIBLE	ENERGÍA ANUAL (kWh E. final)	Kg CO ₂ / kWh E. final	Tn CO₂ /αño	Tn CO₂ Vida útil instalación.
Gas Natural	4.826.868,00	0,252	1.216,371	24.327,415
Biomasa	4.826.868,00	0,018	86,884	1.737,672

Fuente: Comisión permanente de certificación energética y Ministerio de Industria, Energía y Turismo

AHORRO EN LA IMPLANTACIÓN DE LA INSTALACIÓN DE BIOMASA FRENTE AL GAS NATURAL (In CO2)

22.589,742

Fuente: Bioliza

Tabla: Ingresos previstos por Proyectos Clima.

PROYECTOS CLIMA					
AÑO	ENERGÍA ANUAL (kWh E. final)	Tn CO₂/año EVITADAS	Precio Venta Tn CO₂ (€)	Ingreso anual (€)	
2018	4.826.868,00	1.129,487	9,70	10.956,02	
2019	4.826.868,00	1.129,487	9,70	10.956,02	
2020	4.826.868,00	1.129,487	9,70	10.956,02	
2021	4.826.868,00	1.129,487	9,70	10.956,02	
	43.824,10				

Fuente: Bioliza

¡Gracias por vuestra atención!

BIOLIZA, Recursos Estratégicos de Biomasa, S.L.

http://bioliza.es/

Mail: ajperez@bioliza.es

T. +34 615 47 70 67

